Borel matrix Michel

نویسنده

  • Michel Weber
چکیده

We study the Borel summation method. We obtain a general sufficient condition for a given matrix A to have the Borel property. We deduce as corollaries, earlier results obtained by G. Müller and J.D. Hill. Our result is expressed in terms belonging to the theory of Gaussian processes. We show that this result cannot be extended to the study of the Borel summation method on arbitrary dynamical systems. However, in the Lp-setting, we establish necessary conditions of the same kind by using Bourgain’s entropy criterion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Five-value rich lines‎, ‎Borel directions and uniqueness of meromorphic functions

For a meromorphic function $f$ in the complex plane, we shall introduce the definition of five-value rich line of $f$, and study the uniqueness of meromorphic functions of finite order in an angular domain by involving the five-value rich line and Borel directions. Finally, the relationship between a five-value rich line and a Borel direction is discussed, that is, every Borel direction of $f$ ...

متن کامل

Generalizations of Borel-Cantelli Lemma

The Borel-Cantelli Lemma is very important in the probability theory‎. ‎In this paper‎, ‎we first describe the general case of the Borel-Cantelli Lemma‎. ‎The first part of this lemma‎, ‎assuming convergence and the second part includes divergence and independence assumptions‎. ‎In the following‎, ‎we have brought generalizations of the first and second part of this lemma‎. ‎In most generalizat...

متن کامل

Inclusion results for convolution submethods

If B is a summability matrix, then the submethod Bλ is the matrix obtained by deleting a set of rows from the matrix B. Comparisons between Euler-Knopp submethods and the Borel summability method are made. Also, an equivalence result for convolution submethods is established. This result will necessarily apply to the submethods of the Euler-Knopp, Taylor, Meyer-König, and Borel matrix summabili...

متن کامل

Some Basic Results on Actions of Non-affine Algebraic Groups

We study actions of connected algebraic groups on normal algebraic varieties, and show how to reduce them to actions of affine subgroups. This yields a structure theorem for normal equivariant embeddings of semi-abelian varieties, and a characteristic-free version of the Borel–Remmert theorem.

متن کامل

The residual spectrum of $U(n,n)$; contribution from Borel subgroups

‎In this paper we study the residual spectrum of the quasi-split unitary group $G=U(n,n)$ defined over a number field $F$‎, ‎coming from the Borel subgroups‎, ‎$L_{dis}^2(G(F)backslash G(Bbb A))_T$‎. ‎Due to lack of information on the local results‎, ‎that is‎, ‎the image of the local intertwining operators of the principal series‎, ‎our results are incomplete‎. ‎However‎, ‎we describe a conjec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010